Skip to content

查看源代码:
a-bounding-of-a-log-problem.md

---
title: 某道周练压轴的优雅放缩
createTime: 2025/9/10
categories:
    - study
tags:
    - maths
---

:::note 题意
若 $1<t<s$ 均为 $\left|\ln x - \dfrac{1}{\ln x} \right| + \ln x - a = 2$ 的根,求证 $4 \ln t - 3 \ln s + 2 < a$.
:::

之前的步骤与参考答案相同且很简单,故略去。得出 $0 < \ln t < 1 < \ln s$ 之后即有

$$\dfrac{1}{\ln s} + 3 \ln s > 4 > 4 \ln t$$

于是

$$4 \ln t - 3 \ln s + 2 < 2 + \dfrac{1}{\ln s} = a$$