外观
isosceles-triangles-with-equal-perimeter-and-area.md---
title: 周长和面积分别相等的等腰三角形对有多普遍
createTime: 2025/11/2
categories:
- study
tags:
- maths
---
:::theorem
$\forall x_1, x_2 \in (0, +\infty)$,$\exists$ 两个分别以 $2x_1, 2x_2$ 为底的三角形 $\Delta_1, \Delta_2$,满足 $S_{\Delta_1} = S_{\Delta_2}, C_{\Delta_1} = C_{\Delta_2}$。
:::
:::proof
设 $S_{\Delta_1} = S_{\Delta_2} = S, C_{\Delta_1} = C_{\Delta_2} = 2p$,腰长为 $a$,高为 $h$,则 $x_1, x_2$ 都为方程组
$$
\begin{cases}
a^2 = x^2 + h^2 \\
x + a = p \\
xh = S \\
\end{cases}
$$
的解,等价于
$$
x^3 - \frac{p}{2} x^2 + \frac{S^2}{2p} = 0 \qquad \left(0 < x < \dfrac{p}{2}\right)
$$
有根 $x_1, x_2$。
设另一实根为 $x_3$,由韦达定理,
$$
\begin{cases}
x_1 + x_2 + x_3 = \dfrac{p}{2} \\
x_1x_2 + x_2x_3 + x_1x_3 = 0 \\
x_1x_2x_3 = -\dfrac{S^2}{2p}
\end{cases}
$$
显然 $p = 2 \left(x_1 + x_2 - \dfrac{x_1 x_2}{x_1 + x_2} \right), S = \dfrac{2 x_1 x_2}{x_1 + x_2} \sqrt{x_1^2 + x_1 x_2 + x_2^2}$ 存在,
并且 $p = \dfrac{2 x_1^2}{x_1+x_2} + 2x_2 > 2x_2$,同理 $p > 2x_1$,因此这个解合法。
:::