外观
maths-solution-20241018.md---
title: Solution
createTime: 2024/10/18
categories:
- study
tags:
- maths
---
已知 $f(x+y)=f(x)f(yf(x))$,求 $f(x)$
---
$$
\begin{align*}
f'(x) &= \lim_{y\to 0} {f(x+y)-f(x) \over y}
\\
&= \lim_{y\to 0} {f(x)f(yf(x))-f(x) \over y}
\\
&= f(x) \lim_{y\to 0} {f(yf(x))-1 \over y}
\\
&= f(x) \lim_{y\to 0} {\left[f'(yf(x))f(x)\right]}\ \ \left({0\over 0} \text{型洛必达,上下同时对} y \text{求导}\right)
\\
&= af^2(x)
\\
\\
\text{记 } z&=f(x)\text{,则}
\\
{\mathrm{d}z \over \mathrm{d}x}&=az^2
\\
{\mathrm{d}z \over z^2}&=a\mathrm{d}x \text{ 或 } z=0
\\
\int {\mathrm{d}z \over z^2}&=\int a\mathrm{d}x \text{ 或 } z=0
\\
-{1\over z}&=ax+C \text{ 或 } z=0
\\
\text{故 } f(x)&={1\over kx+b} \text{ 或 } f(x)=0
\\
\\
\text{由 } f(0+&0)=f(0)f(0f(0))
\\
f(0)&=0 \text{ 或 } 1
\\
\text{故 } f(x)&={1\over kx+1} \text{ 或 } f(x)=0 \text{,代入检验可知答案正确。}
\\
\end{align*}
$$
---
注:原题有 $x, y \in \mathrm{R_+}$ 限制,不过大同小异。