外观
FFMP-20250101.md---
title: FFMP 20250101
createTime: 2024/12/28
---
> 新年快乐!
$2025$ 是一个神奇的年份,比如它是 $45^2$,也是 $\sum\limits_{i=1}^{9}i^3$.
我们设定义域为 $\mathbb{N}$ 的函数 $F_n(a)=\sum\limits_{i=1}^a i^n \ (n \in \mathbb{N})$,则 $2025$ 可以表示为 $F_3(9)$.
1. 求证:$\forall a\in\mathbb{N}, F_3(a)$ 是完全平方数;
2. 若 ${\dfrac{F_3(a)}{F_2(a)}} \in \mathbb{Z}$,求 $a$ 的值;
3. 求证:若 $n>1, F_n(a)$ 的 $n$ 次项系数为 $\dfrac{1}{2}$ ;
4. 求 $F_n(a)$ 关于 $F_0(a), F_1(a), \cdots, F_{n-1}(a)$ 的表达式.
:::tip
求 $F_2(a)$ 的解析式:
$$
\begin{align*}
(a+1)^3-a^3&=3a^2+3a+1 \\
(a+1)^3-1^3&=\sum_{i=1}^{a} (a+1)^3-a^3 \\
&= \sum_{i=1}^{a} 3a^2+3a+1 \\
&= \sum_{i=1}^{a} 3a^2+ \sum_{i=1}^{a}3a+ \sum_{i=1}^{a}1 \\
&= 3F_2(a)+\frac{3a(a+1)}{2}+a \\
\text{整理可得 } F_2(a) &= \frac{a(a+1)(2a+1)}{6}
\end{align*}
$$
:::
:::details 答案
1. \
写出 $F_3(a)$ 的前几项,猜想 $F_3(a) = \left[\dfrac{a(a+1)}{2}\right]^2$.
证明:使用数学归纳法,
① $F_3(1) = \left[\dfrac{1\times(1+1)}{2}\right]^2 = 1$;
② 若 $F_3(a) = \left[\dfrac{a(a+1)}{2}\right]^2$,
$F_3(a+1) = {\dfrac{a^2(a+1)^2}{4}} + (a+1)^3 = {\dfrac{(a+2)^2(a+1)^2}{4}}$.
显然 $\dfrac{a(a+1)}{2}$ 为整数,证毕。
2.
$$
\begin{align*}
\text{设 }&
\frac{F_3(a)}{F_2(a)}
= \frac{a^2(a+1)^2/4}{a(a+1)(2a+1)/6}
= \frac{3a(a+1)}{2(2a+1)}=k
\\
\text{则 }& 3a(a+1) = 2k(2a+1) \\
\text{整理得 }& 3a^2 + (3-4k)a - 2k = 0 \\
\text{解得 }& a = \frac{4k-3 \pm \sqrt{16k^2+9}}{6} \\
\text{设 }& \sqrt{16k^2+9}=t \in \mathbb{N} \\
\text{则有 }& (t+4k)(t-4k)=9 \\
\text{由 }& 9 = 9\times1 = 3\times3 \quad(t,k\ge0) \\
\text{得 }& k=0 \text{ 或 } 1 \\
\text{所以 }& a=1 \quad(0,-1,\frac{2}{3} \text{ 舍去})
\end{align*}
$$
3. \
显然计算过程中可以省略低次项。于是
$$
\begin{gather*}
\begin{aligned}
(a+1)^{n+1} &= a^{n+1} + (n+1)a^n + \frac{n(n+1)}{2}a^{n-1} + O(a^{n-2}) \\
(a+1)^{n+1}-a^{n+1} &= (n+1)a^n+\frac{n(n+1)}{2}a^{n-1} + O(a^{n-2}) \\
(a+1)^{n+1}-1^{n+1}
&= \sum_{i=1}^{a} (a+1)^{n+1}-a^{n+1} \\
&= \sum_{i=1}^{a} (n+1) i^n+\frac{n(n+1)}{2}a^{n-1} + O(i^{n-2}) \\
&= (n+1)F_n(a)+\frac{n(n+1)}{2}F_{n-1}(a)+O(a^{n-2}) \\
\text{整理可得 } F_n(a) &= \frac{(a+1)^{n+1}}{n+1}-\frac{n}{2}F_{n-1}(a) + O(a^{n-1}) \\
&= \frac{a^{n+1}}{n+1} + a^n-\frac{n}{2}F_{n-1}(a) + O(a^{n-1})
\end{aligned}
\\
\text{不难发现 } F_n(a) \text{ 的 } n \text{ 次项为 } \frac{1}{n},
\\
\text{故 } n-1 \text{ 次项为 } 1-\frac{n}{2}\times\frac{1}{n} = \frac{1}{2}\text{,证毕.}
\end{gather*}
$$
4.
$$
\begin{gather*}
\begin{aligned}
(a+1)^{n+1} &= \sum_{i=0}^{n+1} C_{n+1}^i a^i \\
(a+1)^{n+1}-a^{n+1} &= \sum_{i=0}^{n} C_{n+1}^i a^i \\
(a+1)^{n+1}-1^{n+1} &= \sum_{w=1}^{a} \sum_{i=0}^{n} C_{n+1}^i w^i \\
\end{aligned}
\\
\begin{aligned}
(a+1)^{n+1}-1 &= \sum_{w=1}^{a} \sum_{i=0}^{n} C_{n+1}^i w^i \\
&= \sum_{w=1}^{a} \left(C_{n+1}^{n}w^{n}+\sum_{i=0}^{n-1} C_{n+1}^i w^i \right) \\
&= \left( \sum_{w=1}^{a} C_{n+1}^{n}w^{n} \right) + \left( \sum_{w=1}^{a}\sum_{i=0}^{n-1} C_{n+1}^i w^i \right) \\
&= (n+1)\left( \sum_{w=1}^{a} w^{n} \right) + \left( \sum_{i=0}^{n-1}\sum_{w=1}^{a} C_{n+1}^i w^i \right) \\
&= (n+1)\left( \sum_{w=1}^{a} w^{n} \right) + \left( \sum_{i=0}^{n-1} C_{n+1}^i \sum_{w=1}^{a} w^i \right) \\
&= (n+1)F_n(a) + \sum_{i=0}^{n-1} C_{n+1}^i F_i(a) \\
\end{aligned}
\\
F_n(a) = \frac{1}{n+1} \left[ (a+1)^{n+1} - 1 - \sum_{i=0}^{n-1} C_{n+1}^i F_i(a) \right]
\end{gather*}
$$
:::