Skip to content

查看源代码:
FFMP-20250323.md

---
title: FFMP 20250323
createTime: 2025/3/23
---

$k_1, k_2$ 是方程 $x^{2} - \sqrt{3}x\tan\theta + \sec\theta = a$ 互异的两根,  过椭圆 $\Gamma: \dfrac{x^2}{4}+\dfrac{y^2}{3}=1$ 上一点 $A(-2,0)$ 作斜率分别为 $k_1, k_2$ 的直线 $l_1, l_2$,交 $\Gamma$ 于 $M, N$. 若直线 $MN$ 与原点的距离的最小值为 $1$,求 $a$ 的值。

:::details 答案

设 $l_{MN}: y=kx+b$,联立
$$
\begin{cases}
\dfrac{x^2}{4}+\dfrac{y^2}{3}=1 \\
y=kx+b
\end{cases}
$$
即 $3x^2+4(kx+b)^2=12 \Rightarrow (4k^2+3)x^2+8kbx+4b^2-12=0$

由韦达定理

$$x_1+x_2=-\dfrac{8kb}{4k^2+3},
x_1 x_2=\dfrac{4b^2-12}{4k^2+3}$$

由 $y_1=kx_1+b, y_2=kx_2+b$

$$y_1+y_2=\dfrac{6b}{4k^2+3},
y_1 y_2=\dfrac{3b^2-12k^2}{4k^2+3}$$

$$x_1y_2+x_2y_1=-\dfrac{24}{4k^2+3}$$

于是

$$k_1+k_2 = \dfrac{y_1}{x_1+2}+\dfrac{y_2}{x_2+2} = \dfrac{3}{b-2k}$$
$$k_1 k_2 = \dfrac{y_1y_2}{(x_1+2)(x_2+2)} = \dfrac{3(b+2k)}{4(b-2k)}$$

因为

$$
\begin{cases}
k_1+k_2 = \sqrt{3} \tan\theta\\
k_1 k_2 = \sec\theta - a
\end{cases}
$$

由 $1+\tan^2\theta = \sec^2\theta$,$3+(k_1+k_2)^2 = 3(k_1 k_2 + a)^2$,即

$$3 + \left( \dfrac{3}{b-2k} \right)^2 = 3\left( \frac{3(b+2k)}{4(b-2k)} + a \right)^2$$

令 $t=b-2k, u=\dfrac{b+2k}{b-2k}$,得 $\left( \dfrac{3u}{4} + a \right)^2 - \dfrac{3}{t^2} = 1$

$$\Longrightarrow t^2=\dfrac{48}{(4a+3u-4)(4a+3u+4)}$$

另一方面,由 $d^2 = \dfrac{b^2}{1+k^2} \ge 1$,代入 $b=\dfrac{(u+1)t}{2}, k=\dfrac{(u-1)t}{4}$ 得

$$
\begin{aligned}
&\begin{aligned}
b^2-k^2 &= \dfrac{t^2(3+10u+3u^2)}{16} \\
&= \dfrac{3(3u+1)(u+3)}{(4a+3u-4)(4a+3u+4)} \ge 1 > 0
\end{aligned}
\\
\Longrightarrow~& (3u+1)(u+3) < 0
\longleftrightarrow (4a+3u-4)(4a+3u+4) < 0
\\
\iff& \left( -3, -\dfrac{1}{3} \right)
 = \left( \frac{-4a-4}{3}, \frac{4-4a}{3} \right)
\\
\iff& a=\dfrac{5}{4}
\end{aligned}
$$

放缩后检验:

$a=\dfrac{5}{4}$ 时,$b^2-k^2 = \dfrac{3(3u+1)(u+3)}{(4a+3u-4)(4a+3u+4)} = 1$.

> 由于即使 $MN \parallel y$轴 时,也须满足以上不等式,故其对答案无影响。

:::